On Circuit Complexity Classes and Iterated Matrix Multiplication

نویسندگان

  • Fengming Wang
  • Eric Allender
چکیده

OF THE DISSERTATION On Circuit Complexity Classes and Iterated Matrix Multiplication by Fengming Wang Dissertation Director: Eric Allender In this thesis, we study small, yet important, circuit complexity classes within NC, such as ACC and TC. We also investigate the power of a closely related problem called Iterated Matrix Multiplication and its implications in low levels of algebraic complexity theory. More concretely, • We show that extremely modest-sounding lower bounds for certain problems can lead to non-trivial derandomization results. – If the word problem over S5 requires constant-depth threshold circuits of size n1+ for some > 0, then any language accepted by uniform polynomial-size probabilistic threshold circuits can be solved in subexponential time (and more strongly, can be accepted by a uniform family of deterministic constant-depth threshold circuits of subexponential size.) – If there are no constant-depth arithmetic circuits of size n1+ for the problem of multiplying a sequence of n 3-by-3 matrices, then for every constant d, black-box identity testing for depth-d arithmetic circuits with bounded individual degree can be performed in subexponential time (and even by a uniform family of deterministic constant-depth AC circuits of subexponential size).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Depth-Five Lower Bound for Iterated Matrix Multiplication

We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials with N variables and degree n require NΩ( √ n) gates when expressed as a homogeneous depth-five ΣΠΣΠΣ arithmetic circuit with the bottom fan-in bounded by N1/2−ε. By a depth-reduction result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of homogeneous depth-fo...

متن کامل

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be computed by a depth-4 ΣΠ[O( p n)]ΣΠ[ p n] circuit of size 2O( p n log n) [Tav13]. So to prove VP 6= VNP, it is sufficient to show that an explicit polynomial ∈ VNP of degree n requires 2ω( p n log n) size depth-4 circuits. Soon after Tavenas’s result, for two different explicit polynomials, depth-4 circuit s...

متن کامل

Realizing Arithmetic Operations in Rings ZZ

The constant depth threshold circuit complexity of iterated addition, multiplication, and iterated multiplication in rings Z Z], where is an algebraic integer, is studied. It is shown that iterated addition is 1{approximable, multiplication is 2{approximable, and iterated multiplication is 3{approximable.

متن کامل

Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2×2 matrices, denoted IMMd, and show that the well-known divide-andconquer algorithm cannot be significantly impro...

متن کامل

Satisfiability Algorithms for Restricted Circuit Classes

In recent years, finding new satisfiability algorithms for various circuit classes has been a very active line of research. Despite considerable progress, we are still far away from a definite answer on which circuit classes allow fast satisfiability algorithms. This survey takes a (far from exhaustive) look at some recent satisfiability algorithms for a range of circuit classes and highlights ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011